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APPLICATION OF PENETROMEI'ERS TO THE STUDY OF 

PHYSICAL PROPERTIES OF LUNAR 

AND PLANETARY SURFACES 

By John Locke McCarty, Alfred G. Beswick, 
and George W. Brooks 

Langley Research Center 

SUMMARY 

A study w a s  made t o  evaluate the  p r a c t i c a l i t y  of employing t h e  penetrometer 
technique as a means f o r  determining physical charac te r i s t ics  of a remote sur- 
face such as t h a t  of t he  moon o r  a planet-. The study included a review of t he  
h i s to ry  and fundamentals of t h e  penetrometer concept and an examination of t h e  
basic  requirements f o r  penetrometers and necessary support apparatus. 

Results of t h e  study ind ica te  t h a t  p rac t i ca l  penetrometer systems can be 
employed t o  determine such surface propert ies  as hardness or penet rab i l i ty  and, 
possibly, bearing strength.  Design considerations a re  given f o r  a penetrometer 
system which requires fu r the r  development and a l s o  f o r  penetrometer systems 
presently a t ta inable  but which introduce some complexity and which may impose 
some l imi ta t ions  on t h e  attainment of experimental goals. 
of support apparatus required f o r  some missions are also presented. 

Design considerations 

The appl icabi l i ty  of penetrometer concepts and techniques t o  various 
present-day manned and unmanned spacecraft  i s  discussed. I n  addition, d e t a i l s  
of a spec i f ic  appl icat ion of t h e  concept as a payload f o r  t he  Ranger spacecraft  
a r e  appended. 

INTRODUCTION 

The exploration of t h e  moon is  a p r i m a q  objective of current and fu ture  
space programs. 
electromagnetic techniques t o  accumulate information on t h e  large-scale char- 
a c t e r i s t i c s  of t h e  lunar surface, such as t h e  s i z e  and d i s t r ibu t ion  of c ra t e r s  
and mountains. 
such as surface tex ture  and topographical d e t a i l .  A knowledge of small-scale 
charac te r i s t ics  i s  of primary importance s ince it i s  these propert ies  which w i l l  
determine t h e  a b i l i t i e s  of exploratory vehicles t o  land and move about on t h e  
surface. The lack of such information is  due t o  t h e  i n a b i l i t y  of earth-based 
instrumentation t o  d i r e c t l y  measure t h e  quant i t ies  of i n t e r e s t  with the required 

I n  the  past, s c i e n t i s t s  have made good use of op t i ca l  and 

However, f e w  data  ex i s t  which define small-scale lunar  fea tures  



resolut ion.  
i s t i c s  must be obtained by instruments operating on o r  near t h e  lunar  surface.  

Thus, it appears t h a t  data  defining t h e  lunar  surface character- 

The Langley Research Center has been in te res ted  i n  the  problem of meas- 
uring physical propert ies  of t h e  lunar  surface for some t i m e  and has been 
ac t ive ly  seeking means by which t h i s  might be e f fec t ive ly  accomplished. 
endeavor indicated t h a t  a good approach t o  -the problem would be t o  measure 
d i r e c t l y  t h e  desired surface propert ies  by a well-understood technique which 
provides t h e  data  i n  a form t h a t  allows comparison with t h e  physical propert ies  
of known ear th  materials. 
w a s  i n i t i a t e d  t o  evaluate a technique for determining ce r t a in  physical propert ies  
of t he  lunar  surface such as hardness, bearing strength,  and penet rab i l i ty .  The 
technique consisted of impacting accelerat ion measuring instruments onto t h e  
surface and analyzing t h e  accelerat ions generated during t h e  impact process. 
Consequently, a laboratory study w a s  undertaken t o  r e l a t e  cer ta in  physical char- 
a c t e r i s t i c s  of terrestrial surfaces t o  accelerat ion signatures measured during 
impact of su i tab ly  instrumented p ro jec t i l e s  onto those surfaces.  The scope of 
t h i s  t e s t  program, summarized i n  t ab le  I, included the  study of t h e  impact char- 
a c t e r i s t i c s  of various meta l l ic  p ro jec t i l e s  over two veloci ty  ranges on a wide 
var ie ty  of t a r g e t  materials. 
t i o n  and dimensions of t h e  resu l t ing  ;raters. The r e s u l t s  of t h i s  study, pre- 
sented i n  reference 1, indicated t h a t  sufPicient information can be derived from 
impact accelerat ion t i m e  h i s t o r i e s  t o  define adequately t h e  nature of t h e  tar- 

This 

A program within t h e  framework of these guidelines 

Measurements were taken of t he  impact accelera- 

get  material. Thus, it appears t h a t  cer ta in  propert ies  such as hardness 
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TABLE I 

SCOPE OF IMPACT TESTS 

Target 
~ 

Concrete 
Lead 
B a l s a  
Sod 
Sand  (00 grade) 
Peat moss 
Cement dust  
Peat moss and 

sand mixture 
~ 

S o i l  
Concrete 
Peat moss 
Cement dust  
Layers: 

Peat moss on ba lsa  
Cement dust  on soi l  

' e s t  var iable;  
( p r o j e c t i l e )  

Mass 
Diameter 

Mass 
Nose shape 

Measurements 
. __ 

Acceleration t i m e  h i s t o r y  
Penetrat ion depth 
Crater diameter 

- 

?or 100 t o  240 fps:  
Acceleration time h i s t o r y  
Penetrat ion depth 

?or 240 t o  900 fps:  
Peak acce lera t ion  
Penetrat ion depth 

_ _  

or  



penet rab i l i ty  and, possibly, bearing s t rength of a remote t a rge t  surface, such 
as the  moon or a planet, could be described i n  terms of t h e  propert ies  of 
accessible egrth mater ia ls .  This descr ipt ion i s  accomplished by comparing the  
accelerat ion time h i s t o r i e s  measured during the  impact of accelerometer-equipped 
p ro jec t i l e s  on t h e  remote surface with those of i den t i ca l  p ro j ec t i l e s  during 
impacts on known ear th  materials.  

An invest igat ion of t h e  means of impacting such instrumented pro jec t i les ,  
here inaf te r  re fer red  t o  as  penetrometers, onto the  lunar  surface evolved from 
t he  r e s u l t s  of t he  study reported i n  reference 1 and i s  presented i n  the-present  
paper. Although t h i s  invest igat ion i s  primarily concerned with lunar  surface 
exploration, t h e  technique i s  equally applicable t o  t h e  exploration of planetary 
surfaces.  

SYMBOLS AND NOMENCLATURE 

a accelerat ion 

m a x i m u m  accelerat ion encountered during impact process ahlax 

h a l t i t u d e  above lunar  surface 

t a r b i t r a r y  time 

t2r time with respect t o  ign i t i on  of secondary retrorocket motor 

tt t o t a l  time for impact process 

Penetrometer 

Relay c r a f t  

Receiving s t a t i o n  

impacting body equipped with an accelerat ion 
sensor and having the  capabi l i ty  t o  transmit 
impact accelerat ion s igna ls  t o  a re lay  c r a f t  
o r  a receiving s t a t i o n  

vehicle designed t o  in te rcept  and retransmit 
penetrometer impact accelerat ion s igna ls  t o  
a remotely located receiving s t a t i o n  

vehicle o r  ear th  s i t e  t h a t  receives, processes, 
s tores ,  and u t i l i z e s  accelerat ion s ignals  
from penetrometers 

Penetrometer payload c a r r i e r  s t ruc ture  which houses and deploys penetrometers 
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B A S I C  CONCEPT, COMPONENTS, AND FUNCTIONS 

Summary of Supporting Impact Research 

The accelerat ion time h i s t o r i e s  recorded during t h e  impact tes ts  of ref-  
erence 1 revealed various charac te r i s t ics  which define the  nature of t h e  
impacted surface as w e l l  as t h e  c l a s s  of impact. 
t h e  magnitude of t h e  peak acceleration, t h e  t i m e  required t o  reach t h a t  peak, 
t h e  t o t a l  duration of t h e  accelerat ion process and t h e  overa l l  shape of t he  
accelerat ion pulse.  Figures 1 and 2 a re  presented t o  i l l u s t r a t e  how a remote 
t a rge t  can be evaluated from a knowledge of ce r t a in  of these charac te r i s t ics .  
I n  f igure  1, taken from reference 2, t he  r a t i o  of t h e  measured peak accelera- 
t i ons  t o  t h e  impact ve loc i ty  i s  p lo t ted  as a function of t h e  measured t o t a l  
pulse t i m e  f o r  a s t e e l  hemispherical p ro j ec t i l e  having a diameter of 2 inches 
and a weight of 1 pound impacting various t a rge t  surfaces.  
indicated i n  the  figure,  were chosen t o  be representat ive of t h e  d i f fe ren t  
impact categories - t h a t  is, e l a s t i c ,  p l a s t i c ,  o r  penetration, and combinations 
of these - and were not intended t o  be representat ive of any ant ic ipated lunar 
or planetary surface media. 

These charac te r i s t ics  include 

The t a rge t  surfaces, 
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Figure 1.- Summary of impact data f o r  a steel hemisphere. 
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The important f a c t s  shown by t h e  data  of f igure  1 are as follows. If such 
a p ro jec t i l e  i s  impacted on a remote surface, a good idea of the  hardness of t he  
surface may be obtained e i t h e r  by measuring t h e  peak accelerat ion and the  impact 
veloci ty  o r  t h e  t o t a l  pulse time, since t h e  magnitudes of these charac te r i s t ics  
a re  dependent upon the  t a rge t  material. Hence, it appears t h a t  the  hardness of 
lunar  or planetary surfaces can be described i n  terms of t h e  hardness of acces- 
s i b l e  ear th  materials from a knowledge of e i t h e r  of these impact charac te r i s t ics .  
With the  addi t ional  knowledge of t h e  acceleration signature (pulse shape), t he  
nature of t h e  surface s t ructure ,  including possibly t h e  bearing strength and 
penetrabi l i ty ,  can be defined. Analysis of t h e  complete accelerat ion time 
h i s to ry  can a l so  denote and describe strata configurations such as possible so f t  
dust layers .  A s  an i l l u s t r a t ion ,  sketches of acceleration t i m e  h i s t o r i e s  
recorded during t h e  impact of p ro jec t i l e s  on several  of t h e  various t a r g e t  mate- 
r ials used i n  t h e  impact invest igat ion of reference 1 are presented i n  f igure  2. 
Both t h e  acceleration and time i n  t h i s  f igure  have been normalized: accelera- 
t i o n  with respect t o  t h e  m a x i m u m  accelerat ion encountered during impact and time 
with respect t o  t h e  t o t a l  pulse t i m e .  Acceleration t i m e  h i s t o r i e s  are presented 
f o r  an impacting body s t r ik ing  a mater ia l  such as concrete which r e su l t s  i n  an 
essent ia l ly  e l a s t i c  co l l i s ion  producing an acceleration t i m e  h i s tory  nearly sym- 
metr ical  about a mean v e r t i c a l  l i n e  passing through t h e  accelerat ion peak, a 
material such as lead which r e s u l t s  i n  a p l a s t i c  co l l i s ion  characterized by an 
accelerat ion time h is tory  with a b r i e f  r e s t i t u t i o n  incremerk, and materials i n  
two layer  configurations which r e su l t  i n  penetration of t h e  p ro jec t i l e  i n t o  t h e  
impacted medium. 

0 t/t, I 

I 

0 t /  tt I 

(a) continuous. (b) Layers. 

Figure 2.- General shapes of impact acceleration time histories. 
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The pulse shapes i l l u s t r a t e d  f o r  t h e  l aye r  configurations resul ted from 
impacts i n t o  loose peat moss on ba lsa  and i n t o  a layer  of ground portland cement 
on s o i l  and serve t o  ind ica te  t h e  a b i l i t y  of t h e  penetrometer technique t o  
dis t inguish the  l aye r  charac te r i s t ics  of t a r g e t  materials. 

From t h i s  b r i e f  review of t h e  r e su l t s  of t h e  impact studies,  it i s  apparent 
t h a t  much information on t h e  nature of lunar  and planetary surfaces can be 
gained from an analysis  of complete accelerat ion time h i s t o r i e s  recorded during 
t h e  impact of penetrometers on those surfaces. Accordingly, consideration w a s  
given t o  t h e  appl icat ion of such devices as an experimental technique t o  eval- 
ua te  charac te r i s t ics  of such remote surfaces and as a means for sounding those 
surfaces i n  support of manned landings. The following sect ions of t h e  report  
are devoted t o  an examination of t h e  operating pr inc ip les  and basic  require- 
ments of penetrometer devices and necessary accompanying support equipment which 
could be employed t o  obtain data  on lunar and planetary surface charac te r i s t ics .  

P enet romet er  

General considerations.- A s  discussed i n  t h e  previous section, t h e  impact 
technique f o r  studying the-physical propert ies  of a remote surface r e l i e s  upon 
t h e  knowledge of c e d a i n  charac te r i s t ics  of an impact accelerat ion t i m e  h i s tory  
or, more favorably, a complete record of t he  event. I n  order t o  obtain such 
information, t h e  basic element required i s  a penetrometer equipped with a means 
of sensing t h e  accelerat ions encountered by t h e  body during the  impact process. 

For most p rac t i ca l  applications it i s  des i rab le  t h a t  t h e  penetrometer be 
Physical transmission l i nks  between t h e  a self-contained operational device. 

sensor and t h e  penetrometer deploying s t ructure ,  such as t h e  t ra i l ing-wire  sys- 
tems of references 1 and 3, impose operational r e s t r i c t i o n s  t o  such a technique. 
A technique appearing most a t t r a c t i v e  f o r  p r a c t i c a l  appl icat ion i s  t o  telemeter 
t h e  acceleration information developed by t h e  penetrometer by means of i t s  own 
telemetry system t o  a nearby receiving s t a t ion .  
requires packaging a power supply, transmitter,  and antenna system, i n  addition 
t o  t h e  accelerat ion sensing device, within a casing capable of withstanding a l l  
ant ic ipated impact loads.  This technique permits t h e  acquis i t ion of accelera- 
t i o n  data  f o r  a l l  types of impact including high shock loadings and deep pene- 
t ra t ions ,  provided t h a t  telemetry communication i s  maintained during the  impact 
process. A discussion follows which b r i e f l y  out l ines  design considerations f o r  
a penetrometer u t i l i z i n g  t h e  telemetry technique. 

Telemetering the  information 

Design considerations.- A penetrometer should have t h e  capabi l i ty  of 
sensing impact accelerat ions and transmitt ing them t o  a receiving s t a t ion  regard- 
less of i t s  or ien ta t ion  during impact. Such a penetrometer would not require 
a t t i t u d e  s t a b i l i t y  and control nor elaborate deployment techniques. I n  addi- 
t ion,  t h e  data  transmitted by such penetrometers would be va l id  despi te  surface 
topography. 
spherical  design equipped with an omnidirectional accelerat ion sensor and an 
omnidirectional antenna. Some d e t a i l s  of such a system are described i n  t h e  
appendix. 
trometer are l imited by t h e  capabi l i t i es  of avai lable  accelerat ion sensors 

Adherence t o  these requirements a l ludes t o  a penetrometer of 

The p rac t i ca l  aspects of constructing such an omnidirectional pene- 
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having t r u l y  omnidirectional charac te r i s t ics .  However, e f f o r t s  aye currently 
underway t o  develop accelerometers having or approximating omnidirectional 
capabi l i ty .  Sensors undergoing development include hydrodynamic sensors which 
sense pressure changes i n  a spherical ly  confined f l u i d  due t o  applied accelera- 
t ions,  e lectronic  squaring and summing or d i rec t  algebraic summation of indi-  
vidual  axis outputs of conventional piezoelectr ic  t r i a x i a l  accelerometers, and 
t h e  summation of t h e  individual outputs of multiple spherical ly  d is t r ibu ted  
l i n e a r  accelerometers. Other schemes providing or approximating omnidirec- 
t i o n a l i t y  are conceivable; however, they appear to be e i t h e r  l e s s  compatible 
with t h e  penetrometer concept or l e s s  advanced i n  t h e i r  evolution. 

It i s  apparent t h a t  t he  use of some of these sensors may produce accelera- 
For example, t he  d i r e c t  algebraic summation of a tri- t i o n  measurement e r rors .  

axial accelerometer can r e s u l t  i n  e r rors  which approach 6. 
surface propert ies  of t h e  moon were current ly  known t o  t h i s  accuracy, t he  design 
of spacecraft  t o  land on such a surface would be a comparatively straightforward 
engineering problem. 

However, i f  t he  

Unt i l  a su i tab le  omnidirectional accelerometer is  available, other  
approaches o f f e r  a t t r a c t i v e  p o s s i b i l i t i e s  for penetrometer applications.  
cally,  such approaches use conventional instrumentation techniques but s ac r i f i ce  
omnidirectionality. One such approach i s  the  use of unidirect ional  accelera- 
t i o n  sensors. Penetrometers employing such devices may assume a wide var ie ty  
of configurations such as, f o r  example, t h e  bullet-shaped penetrometer described 
i n  t h e  appendix. However, any such unidirect ional  penetrometer must be properly 
oriented with respect t o  t h e  t a rge t  surface during impact, which introduces 
s t r ingent  a t t i t u d e  control requirements t h a t  are nonexistent i n  omnidirectional 
designs. Att i tude control of unidirect ional  penetrometers f o r  use on surfaces 
of c e l e s t i a l  bodies possessing an atmosphere, as i n  the  case of most planets, 
can be achieved through t h e  use of conventional aerodynamic devices such as 
parachutes, s t ab i l i z ing  f ins ,  and so fo r th .  However, unidirect ional  penetrom- 
e t e r s  designed t o  study surfaces having l i t t l e  or no atmosphere, as i n  the  case 
of  t he  moon, must depend upon other  techniques for achieving s t a b i l i t y .  
s t a b i l i t y  aspect of unidirect ional  systems i n  a tenuous atmospheric environment 
i s  a l so  discussed i n  t h e  appendix. 

B a s i -  

The 

I n  summary, t h e  design of penetrometer devices requires t h a t  consideration 
be given t o  ce r t a in  p r a c t i c a l  problem areas .  
a r e  bas ica l ly  developmental whereas those of unidirect ional  systems r e l a t e  t o  
increased experimental complexity. The unidirect ional  system can be real ized 
i n  hardware form for immediate appl icat ion and the  more desirable  omnidirec- 
t i o n a l  system, present ly  under development, should be achieved i n  t h e  near 
fu ture .  

Those of omnidirectional systems 

Relay C r a f t  

General considerations.- I n  order t o  obtain t h e  impact accelerat ion infor-  
mation from t h e  penetrometers, t h e  data  receiving s t a t i o n  must be within t h e  
transmission f i e l d  of t h e  penetrometer telemetry system. However, penetrom- 
e t e r s  of p rac t i ca l  s i ze  are l imited by avai lable  power, antenna efficiency, and 
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s o  forth;  hence, it i s  not f eas ib l e  t o  transmit their  impact acceleration s ig-  
na ls  f o r  extensive distances.  Therefore, f o r  applications where the  receiving 
s t a t i o n  i s  beyond t h e  penetrometer transmission range, as f o r  transmission t o  
lunar  o r  planetary orb i t ing  vehicles o r  t o  earth, provisions must be made t o  
in te rcept  and retransmit t h e  penetrometer s ignals  t o  t h e  d is tan t  receiving sta- 
t ion .  A vehicle which f u l f i l l s  these requirements i s  here inaf te r  referred t o  
as a relay c ra f t .  I n  remote penetrometer experiments, it would appear most 
p rac t i ca l  t o  provide t h e  penetrometer payload c a r r i e r  with the  capabi l i ty  t o  
serve as a re lay  c r a f t  s ince t h i s  s t ruc ture  would be i n  t h e  v i c in i ty  of t h e  
penetrometer impact area by v i r tue  of i t s . b a s i c  function. 

I n  order t o  f u l f i l l  i t s  mission, t h e  ,relay c r a f t  must receive t h e  penetrom- 
e t e r  accelerat ion data  and retransmit those data  i n  a form su i tab le  f o r  recep- 
t i o n  at d i s t an t  receiving s t a t ions .  When t h e  range of t h e  receiving s t a t i o n  i s  
moderate, as, f o r  example, a parent spacecraft  within several  hundred miles, t h e  
re lay  c r a f t  may simply amplify and red i rec t  t h e  penetrometer s ignals .  When the  
receiver i s  a t  grea t  distances from t h e  relay c raf t ,  as f o r  transmissions t o  
ear th  from t h e  v i c i n i t y  of t h e  moon o r  a planet, da ta  s igna l  processing may a l s o  
be required. The da ta  processing, i n  effect ,  exchanges the  peak power require- 
ment of instantaneous data  transmission f o r  longer transmission time; thereby 
t h e  demands placed upon t h e  power supply are decreased. A n  example of a data  
processing technique i s  presented i n  the  appendix. 

Design considerations.- The purpose of t h e  relay c r a f t  has been previously 
defined as a means t o  extend t h e  transmission range of t h e  penetrometers so  t h a t  
they can be used t o  obtain impact accelerat ion s igna ls  at  grea t  distances from 
t h e  receiving s t a t ion .  Two general  concepts are considered, both employing t h e  
penetrometer payload c a r r i e r  as t h e  re lay  c r a f t .  I n  t h e  first concept t he  
penetrometer payload c a r r i e r  serves as a re lay  c r a f t  p r i o r  t o  impacting o r  
landing on t h e  surface undergoing evaluation, and i n  t h e  second concept t h e  
penetrometer payload c a r r i e r  performs t h e  re lay  operations a f t e r  landing and 
while s i tua ted  on t h e  surface. Operations of t h e  re lay  c r a f t  f o r  t h e  f irst  
concept do not depend upon a subsequent successful landing of t ha t  c r a f t  on t h e  
surface being investigated because i t s  operations a re  accomplished during t h e  
in t e rva l  between penetrometer impacts on t h e  surface and relay-craf t  contact 
with t h e  surface. Therefore, f o r  t h i s  concept, su f f i c i en t  time must be pro- 
vided f o r  t he  re lay  c r a f t  t o  receive, condition, and retransmit the  impact 
accelerat ion information generated by t h e  impacting penetrometers. 
f o r  re lay  operations can be readi ly  obtained by holding t h e  relay c ra f t  a l o f t  
through t h e  use of auxi l ia ry  devices such as retrorockets,  parachutes, and so 
for th ,  which reduce t h e  r a t e  of descent of t h e  c r a f t  after the  penetrometers 
have been launched. 

Ample t i m e  

The second concept, wherein the  re lay  c ra f t  i s  s ta t ioned on t h e  surface 
undergoing evaluation during t h e  penetrometer impacts, does not present any t i m e  
l imi ta t ion  f o r  relaying t h e  impact acceleration data; however, it does pose 
problems which are r e l a t ed  t o  t h e  nature of t h e  surface.  Unlike the  above- 
surface re lay  c raf t ,  t h i s  concept demands a successful landing on an unknown 
surface with t h e  c raf t  operationally capable of both receiving and transmitt ing 
data.  The success of such conceptual operations i s  dependent upon t h e  sur- 
rounding surface t e r r a i n .  Should t h e  space between t h e  impacting penetrometers 
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and the  relay c ra f t  be interrupted by surface i r r egu la r i t i e s ,  penetrometer 
transmissions could be deflected or absorbed and never reach t h e  relay c r a f t .  
A physical  transmission l i n k  such as a t r a i l i n g  w i r e  could solve t h i s  problem 
but possibly at  t h e  expense of a reduction i n  t h e  surface exploration area 
and/or increased operational complexity attendant with long-line t ra i l ing-wire  
systems. 

SPACECRAFT APPLICATIONS 

I n  view of t h e  apparent capabi l i ty  of t h e  penetrometer technique t o  eval- 
uate  cer ta in  physical propert ies  of t h e  surface of t h e  moon or a planet or t o  
serve as a means f o r  sounding those surfaces i n  support of manned landings, t h e  
following paragraphs b r i e f l y  review t h e  results of a study directed toward pos- 
s i b l e  applications of t h i s  technique t o  payloads of various spacecraft .  
t h e  purposes of t h i s  study, t he  penetrometer payload i s  applied t o  only those 
spacecraft  presently i n  use or being considered f o r  use i n  lunar exploration, 
however applications t o  other  spacecraft  and t o  other  surfaces appear equally 
prac t ica l .  
nique as an experiment aboard t h e  unmanned Ranger and Surveyor and as a sounding 
device adapted t o  manned spacecraft, such as Apollo, t o  evaluate prospective 
landing s i t e s .  

For 

Consideration i s  given t o  t h e  appl icat ion of t h e  penetrometer tech- 

Unmanned Spacecraft 

Ranger spacecraft.- A penetrometer experiment as a payload f o r  t h e  Ranger 
spacecraft  would necessarily be t h e  primary payload because of spacecraft  volume 
and w e i g h t  l imitat ions.  Two applications t o  Ranger are considered, and f o r  each 
t h e  experiment i s  designed t o  t h e  same r e s t r a i n t s  specif ied f o r  t h e  seismometer 
experiment of Rangers 3 t o  5 .  I n  t h e  first application, penetrometers are 
released i n  f r e e  f a l l  from a re lay  c r a f t  hovering j u s t  above t h e  lunar  surface 
and i n  t h e  other  appl icat ion t h e  penetrometers are ejected from t h e  relay c ra f t  
a f t e r  it has come t o  rest on the  lunar  surface.  

A payload designed t o  re lease penetrometers from a re lay  c r a f t  essent ia l ly  
hovering above t h e  lunar  surface, as depicted by t h e  sketch i n  f igure  3 ,  
requires a s l i g h t l y  d i f f e ren t  terminal t r a j ec to ry  than t h a t  programed f o r  the 
seismometer experiment of R a n g e r s  3 t o  5 .  
necessary t o  provide control  over various penetrometer impact conditions and t o  
allow su f f i c i en t  t i m e  f o r  da ta  processing and retransmission. A s  shown i n  f ig-  
ure  4, which presents t h e  approximate terminal t r a j ec to ry  d e t a i l s  of Rangers 3 
t o  5 and one possible t r a j ec to ry  of a penetrometer payload, t he  Ranger seismom- 
e t e r  free-falls t o  t h e  lunar  surface following burnout of t h e  retrorocket motor 
(defined herein as the  primary retrorocket)  at  a lunar  a l t i t u d e  of approximately 
1100 feet .  The modifications t o  t h i s  t r a j ec to ry  f o r  t h e  penetrometer payload 
include ear ly  primary retrorocket f i r i n g  t o  permit burnout a t  a lunar  a l t i t u d e  
of 3000 feet, and subsequent i gn i t i on  of a small secondary retrorocket motor 
included i n  t h e  penetrometer payload. 
i s  t o  hold t h e  relay c r a f t  above t h e , l u n a r  surface, within t h e  transmission 
f i e l d  of t h e  penetrometer telemetry system f o r  t h e  required time in te rva l .  

Modifications t o  t h e  t r a j ec to ry  are 

The purpose of t h i s  secondary retrorocket 
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L- 64 - 4703 
Figure 3 . -  Technique for penetrometer operations with t h e  r e l ay  c r a f t  above t h e  lunar  surface.  

Since there  ex i s t s  a wide var ie ty  of s m a l l  re t rorockets  capable of f u l f i l l i n g  
t h e  secondary retrorocket requirements and since the  t iming  of terminal events 
i s  variable,  there  ex i s t s  numerous possible re lay-craf t  t r a j e c t o r i e s  f o r  a 
penetrometer payload aboard t h e  Ranger spacecraft .  For the  t r a j ec to ry  i l l u s -  
t r a t e d  i n  f igure  4, a secondarg. retrorocket having a thrust-weight r a t i o  of 4 
and a 10-second burning t h e  i s  i g n i t e d  a t  2400 f e e t  above the  lunar  surface.  
Considering t h e  previously noted requirements f o r  a hovering relay c raf t ,  it i s  
apparent t h a t  t h e  use of such a secondary retrorocket r e s u l t s  i n  a relay-craf t  
t r a j ec to ry  which would accommodate a t  l e a s t  a l l  penetrometers released during 
t h e  first 8 seconds of t h e  secondary retrorocket burning time. 
eter releases are i l l u s t r a t e d  i n  grea te r  d e t a i l  i n  f igure  5 where the  time and 
a l t i t u d e  relat ionships  a re  presented f o r  t he  re lay  c r a f t  and penetrometers 
released at  the  time of secondary retrorocket i gn i t i on  and 8 seconds la ter .  
Impact accelerat ion s ignals  from penetrometers released during t h i s  8-second 
t i m e  i n t e rva l  would be retransmitted t o  ear th .  This f igure  shows t h a t  t he  dis- 
tances from t h e  penetrometer t o  the  re lay  c r a f t  are wel l  within the  transmission 
range of p rac t i ca l  penetrometer capabi l i t i es  (avai lable  power, antenna eff i -  
ciency, e t c . )  and t h a t  ample time i s  provided for data  processing and retrans- 
mission, which requires on ly  a f e w  seconds. 

These penetrom- 

Other t r a j e c t o r i e s  f o r  similar 
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I n  the  second application 
of penetrometers as a Ranger 
payload, experimental opera- 
t i ons  are conducted from t h e  
surface of t h e  moon. T h i s  
pa r t i cu la r  application w a s  
proposed i n  reference 3 which 
a l so  reports  t h e  r e su l t s  of a 
de ta i led  study of t he  tech- 
nique. It consis ts  of 
replacing the  inner portion 
of the  seismometer experiment 
of Rangers 3 t o  'j with a pen- 
etrometer payload while 
re ta ining the  outer she l l ,  
t h a t  is, t he  balsa-wood impact 
l imi te r ,  of t he  seismometer 
capsule. The method of del iv-  
ering the  payload t o  t h e  lunar  
surface i s  iden t i ca l  t o  t h a t  
developed f o r  t he  seismometer. 
(See f i g .  4 . )  Upon coming t o  

impact l i m i t e r  i s  removed and 

Figure 4.- Terminal t r a j ec to ry  d e t a i l s  of Rangers 3 
t o  5 showing possible appl ica t ion  t o  a penetrom- 
e t e r  payload. r e s t  on t h e  surface, t he  

t h e  inner penetrometer payload assembly i s  erected on the  lunar  ve r t i ca l .  An 
antenna f o r  data  transmissions t o  ear th  i s  erected and, as schematically i l l u s -  
t r a t e d  i n  figure 6, t he  penetrometer payload i s  prepared t o  launch t h e  penetrom- 
e t e r s .  The design employs spherical  omnidirectional penetrometers which are 
individually launched from the  parent capsule. Signals from t h e  penetrometers 
pass t o  t h e  relay c ra f t  by means of t r a i l i n g  wires and a r e  then transmitted t o  
ear th .  

The two aforementioned techniques i l l u s t r a t e  appl icat ion of penetrometers 

Since t h e  Ranger spacecraft  imposes 
t o  obtain data  on charac te r i s t ics  of t h e  lunar  surface when employed as the  
primary payload of t h e  Ranger spacecraft .  
s t r i c t  payload volume and weight l imitat ions,  a more extensive evaluation of 
surface charac te r i s t ics  would be afforded through the  use of larger ,  more 
sophisticated vehicles, such as Surveyor, which could be soft-landed on t h e  
surf ace. 

Surveyor spacecraft.- I n  view of t h e  l e s s  s t r ingent  weight and volume 
l imi ta t ions  imposed by t h e  Surveyor, t h i s  spacecraft  could be adapted t o  
include a penetrometer experiment as a secondary payload. A s  f o r  Ranger, two 
penetrometer applications are considered herein, both taking advantage of t h e  
Surveyor data  transmission equipment t o  re lay the  penetrometer impact s ignals  
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t o  ear th  receiving sta- 

t i ons  include t h e  release 
of penetrometers from t h e  

2,800 spacecraft  during the  
terminal phase of t he  
vehicle t ra jec tory  and 
t h e  launching of penetrom- 
eters from t h e  spacecraft  
following a s o f t  landing 
on t h e  lunar surface. 

3,m t ions .  The two applica- - 

- 

A typ ica l  terminal 
h, f t  

descent t ra jec tory  of t h e  
Surveyor spacecraft i s  
presented i n  f igure  7 and 
includes, i n  chronological 
sequence: a main retro-  
phase which posi t ions t h e  
c r a f t  a t  approximately 
27,000 f e e t  above the  
lunar  surface at burnout 
t rave l ing  with a veloci ty  
vector of about 350 fps, 
a vernier  descent phase 

;o during which l a t e r a l  
veloci ty  i s  nulled and 
v e r t i c a l  veloci ty  i s  

Time to impoct of relay craft, sec 

retarded such t h a t  at 
about 40 f e e t  above t h e  
lunar  surface the  space- 

Figure 5.- Terminal t r a j ec to ry  d e t a i l s  of a penetrometer pay- 
load as applied t o  t h e  Ranger spacecraft .  

c r a f t  descent ve loc i ty  i s  approximately 5 fps,  a constant descent veloci ty  of 
about 5 fps  t o  approximately 13 f ee t  above the  lunar  surface, and f r e e  f a l l  t o  
lunar  surface contact. The a l t i t u d e  t i m e  h i s tory  of t h i s  descent t r a j ec to ry  i s  
presented i n  f igu re  8 where t i m e  i s  re la ted  t o  t h e  in s t an t  of spacecraft touch- 
down. The terminal phase of t h e  Surveyor landing, as i l l u s t r a t e d  i n  f igures  7 
and 8, permits considerable l a t i t u d e  i n  t h e  programing of penetrometer re leases .  
Figures 7 and 8 depict  penetrometer t r a j e c t o r i e s  f o r  re leases  at a r b i t r a r i l y  
selected lunar  a l t i t udes  of 100, 1000, and 5000 feet .  The two f igures  ind ica te  
t h a t  no a l t e r a t ions  t o  t h e  programed f l i g h t  t r a j ec to ry  of t h e  Surveyor space- 
c r a f t  would be required t o  s a t i s f a c t o r i l y  perform a penetrometer experiment. 
Penetrometers released from Surveyor between lunar  a l t i t u d e s  of 5000 f e e t  and 
100 feet would have acceptable impact ve loc i t ies ,  and suf f ic ien t  time would be 
avai lable  f o r  re lay operations by t h e  spacecraft  p r i o r  t o  touchdown. 
of impact ve loc i t i e s  would extend from approximately 40 t o  330 fps, corre- 
sponding t o  re leases  from 100 f e e t  t o  5000 fee t ,  respectively.  
ve loc i t i e s  would not impose s t ruc tu ra l  loadings requiring undue ruggedization 
of t h e  penetrometers and, furthermore, are within a range compatible with 
straightforward ca l ibra t ion  procedures. 
e t e r  impact and spacecraft  touchdown i s  more than adequate f o r  a l l  re leases  
above a lunar  a l t i t u d e  of approximately 100 f e e t  and increases with a l t i t ude .  

The range 

Such impact 

The time difference between penetrom- 
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Figure 6.- Technique f o r  penetrometer operations conducted from a lunar-based re lay  c r a f t .  
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However, s ignals  from t h e  
impacting penetrometers would 
be transmitted t o  t h e  space- 
c r a f t  through t h e  exhaust of 
t h e  vernier  rocket motors and 
consideration must be given t o  

products on t h i s  transmission. 
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/ The appl icat ion of pene- 
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trometer systems as secondary 
payloads t o  lunar-based 
Surveyor spacecraft  i s  not sig- 
n i f i can t ly  unlike t h e  applica- 
t i o n  t o  lunar-based penetrom- 
e t e r  payloads of Ranger 

However, l i k e  t h e  lunar-based 
R a n g e r  penetrometer payload, 
t h e  method of penetrometer 

\ Penetrometer trajectory 
1 from release a t :  

Constant velocity spacecraft  previously discussed. 

"1 Free-fall phase 1 deployment is  subject t o  t h e  
demands placed upon any vehicle 

I I 1  required t o  operate from t h e  
lunar  surface. (See sect ion I I I  1 , -  

100 I ,m Qm e n t i t l e d  "Relay C r a f t  .") Pen- 
etrometer deployment from such 
re lay  c r a f t  could include free 
f a l l  o r  propelled launches t o  
t h e  lunar  surface with s ignals  
from t h e  penetrometers passing 

I 1  
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Figure 7.- Terminal descent phases of Surveyor 
spacecraft  showing possible penetrometer 
deployment. 
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w i r e  l i n k s  f o r  eventual retrans- 
mission t o  earth-based receiving 
s t a t ions .  

- Spacecraft 
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i Manned Spacecraft 

Penetrometers show promise 
as sounding devices f o r  manned 
spacecraft  t o  evaluate immediate 
prospective landing s i t e s .  
Information gained from impacting 
penetrometers would aid t h e  astro-  
naut i n  deciding whether the  pro- 
spective s i t e  i s  su i tab le  f o r  a 
spacecraft  landing. The opera- 
t i o n a l  procedure of t he  penetrom- 
e ter  technique i n  the  manned 
lunar  landing phase of t h e  Apollo 
mission, f o r  example, would be 
very similar t o  t h a t  f o r  unmanned 
Ranger and Surveyor spacecraft  

experiments from above the  lunar  
surface.  For t h e  unmanned mis- 
sions, a re lay  c ra f t  serves t o  
retransmit t he  penetrometer 
impact information t o  receiving 
s t a t ions  on ear th  o r  t o  a parent 

lunar  o rb i t e r .  However, f o r  manned missions, t h e  spacecraft  i t s e l f  i s  t h e  
receiving s t a t i o n  and t h e  penetrometer s ignals  would be presented t o  t h e  astro- 
naut f o r  h i s  immediate use and f o r  retransmission t o  ear th  as desired. 
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L I designed t o  perform penetrometer 
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Time to landing of spacecraft, sec 

Figure 8.- Terminal t r a j ec to ry  d e t a i l s  of Surveyor 
spacecraft showing possible penetrometer 
deployment. 

The application of penetrometer systems t o  manned spacecraft  does not 
necessarily require  the  landing vehicle t o  be i n  i t s  terminal phase before 
obtaining a landing-site evaluation. For example, t he  manned spacecraft  could 
release a number of probes from lunar  o rb i t  t h a t  would house penetrometers f o r  
deployment over d i f fe ren t  areas  of t h e  lunar  surface. I n  such cases, t he  probes 
a re  simply unmanned penetrometer payloads which would provide t h e  necessary 
control over t h e  penetrometer impact veloci ty  and serve as the  relay c r a f t  t o  
retransmit t h e  penetrometer impact information t o  t h e  orbi t ing astronaut and/or 
t o  ear th .  The decision could then be made as t o  which of t h e  sounded areas 
would be most su i tab le  f o r  spacecraft landing. To a i d  i n  guiding the  astronaut 
t o  t h e  selected site, one a t t r a c t i v e  scheme would consis t  of equipping the 
probes with impact survivable homing devices such as radio-beacon transponders. 
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CONCLUDING REMARKS 

Basic impact researFh has shown t h a t  an analysis  of accelerations produced 
during the  impact of su i tab ly  instrumented penetrometers can provide needed 
information on physical charac te r i s t ics  of a remote surface such as t h a t  of the 
moon or t h e  planets .  
such surface propert ies  as hardness or penet rab i l i ty  and, possibly, bearing 
strength.  One system, omnidirectional i n  character, has been conceived but i t s  
operational use depends upon completion of t h e  development of a su i tab le  omni- 
d i rec t iona l  accelerat ion sensor. A unidirect ional  system i s  shown t o  be a t t a in -  
able within present-day technology at the  expense of some increase i n  experi- 
mental complexity. Both systems are appropriate t o  unmanned exploratory missions 
and t o  manned reconnaissance o r  landing missions. 

P rac t i ca l  penetrometer systems can be designed t o  evaluate 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 1, 1964. 



APPENDIX 

DETAILED APPLICATION OF TKF: PENETROMZTER TECHNIQUE 

TO TKE RANGER PROGRAM 

This appendix presents  a descr ipt ion of t h e  scope and concepts of a two- 
phase study undertaken t o  examine the  appl icat ion of t h e  penetrometer technique 
t o  payloads for t h e  Ranger spacecraft .  The first phase employs omnidirectional 
penetrometers and embraces several  areas necessi ta t ing fu r the r  developmental 
e f f o r t s .  The second phase t r e a t s  a unidirect ional  penetrometer system su i tab le  
f o r  immediate appl icat ion t o  a Ranger payload. The scope of both phases con- 
ta ined several  bas ic  guiding pr inciples  f o r  penetrometer-system design which 
included: (1) adherence t o  weight, volume, and s t r u c t u r a l  in te r face  require- 
ments previously established f o r  t he  seismometer payload of Rangers 3 t o  5; (2 )  
operations independent of lunar-surface conditions; ( 3 )  no requirements t o  suc- 
cessful ly  land a vehicle on t h e  lunar  surface; ( 4 )  acquis i t ion of impact infor- 
mation which describes t h e  surface s t ruc ture  at  various points  over a large 
t e r r i t o r i a l  area; and ( 5 )  mechanical and e lec t ronic  s implici ty  consistent with 
obtaining i n t e l l i g i b l e  information. The r e s u l t s  of t he  study f o r  both phases 
are presented because t h e  d e t a i l s  of t h i s  appl icat ion a r e  appropriate 'io pos- 
s i b l e  fu ture  appl icat ions of t h e  penetrometer technique t o  other  spacecraft .  

Omnidirectional System 

A photograph of a model of t h e  omnidirectional penetrometer payload as 
applied t o  t h e  Ranger spacecraft  i s  presented i n  f igu re  9 together  with tha t  of 
t h e  seismometer f o r  comparison purposes. The photograph i l l u s t r a t e s  the  nature 
and in te r face  compatibil i ty with the  Ranger seismometer payload. The f igure  
a l s o  iden t i f i e s  major components of t h e  spacecraft  configuration f o r  a penetrom- 
e ter  experiment - such as the  bus, which i s  t h e  supporting s t ruc ture  f o r  the  
experiment during t h e  earth-to-moon t r a n s i t ;  t h e  retrorocket motor, again 
referred t o  as t h e  primam retrorocket,  which i s  used t o  slow the  payload near 
t h e  lunar  surface from a veloci ty  of about 9000 f p s  t o  a nominal value of zero; 
and the  payload, which consis ts  of t he  re lay  c raf t ,  equator ia l ly  mounted spher- 
i c a l  penetrometers, and a secondary retrorocket motor. 

A t  burnout of t h e  primary retrorocket, t h e  penetrometer payload i s  sepa- 
ra ted  from t h e  spent retrorocket by the  same apparatus and techniques used f o r  
t h e  seismometer payload and follows a t r a j ec to ry  such as t h e  one i l l u s t r a t e d  
i n  figure 10. 
i l l u s t r a t e d  i n  more d e t a i l  by f igure 11 i s  somewhat d i f f e ren t  from t h a t  
described i n  the  t e x t  f o r  Ranger penetrometer payloads ( f i g s .  4 and 5 ) .  
a number of t r a j e c t o r i e s  f o r  penetrometer payloads are avai lable  due t o  the  
f l e x i b i l i t y  i n  t h e  event-timing sequence and t h e  wide choice of penetrometer 
payload secondary retrorockets,  t h e  selected t r a j ec to ry  f o r  a given payload i s  
a r e su l t  of a number of considerations and compromises. Among these a re  various 
physical parameters of t he  payload such as weight and spin-up rate, power and 
transmission time tradeoffs,  and penetrometer impact veloci ty  and dispersion. 

The penetrometer payload t r a j ec to ry  described by f igure  10 and 

Since 
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Figure 9.- Photographs of Ranger spacecraft  models showing seismometer and possible omnL 

d i r ec t iona l  penetrometer payloads. 

The t r a j ec to ry  f o r  t h i s  application w a s  chosen so  as t o  y ie ld  information on 
t h e  nature of t h e  lunar  surface from 16 penetrometers impacting t h a t  surface 
over an area of about 1/2 mile i n  diameter while employing a secondary retro-  
rocket having a burning time of 10 seconds and a thrust-weight r a t i o  of 2 i n  
t h e  moon’s grav i ta t iona l  f i e l d .  
change required i n  t h e  operational aspects of t he  spacecraft  used f o r  Rangers 3 
t o  5 i s  t o  s e t  t he  radar a l t imeter  ahead about 1/2 second. Thus, separation of 
t h e  bus, spin-up of t h e  primary retrorocket and payload, and ign i t ion  and burn- 
out of t h e  primary retrorocket w i l l  occur approximately 1/2 second e a r l i e r  than 
t h e  corresponding t i m e s  f o r  Rangers 3 t o  5 .  Consequently, t he  a l t i t u d e  of t h e  
penetrometer payload above t h e  lunar  surface at primary retrorocket burnout w i l l  
be about 5600 f e e t  as compared t o  about 1100 feet  f o r  t he  seismometer payload. 
However, t h e  payload res idua l  ve loc i t i e s  (rms v e r t i c a l  veloci ty  of 23.8 f p s  and 
an rms horizontal  ve loc i ty  of 74.5 fps )  and inc l ina t ion  of t h e  ve loc i ty  vector 
with respect t o  t h e  lunar  v e r t i c a l  a t  burnout w i l l  be about t he  same f o r  both 
payloads. 

For purposes of t h i s  experiment, t h e  only 
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Figure 10.- Terminal trajectory details of Ranger space- 
craft seismometer and possible omnidirectional pene- 
trometer payloads. 

Mode of operation.- A t  the  ins tan t  of separation of t he  payload from the  
spent primary retrorocket,  t he  secondary retrorocket i s  f i r ed .  Siaultaneously, 
t h e  first salvo of four  penetrometers i s  released and allowed t o  f r e e - f a l l  t o  
t he  lunar  surface as shown i n  f igure  11, which shows t h e  terminal t r a j e c t o r i e s  
of t he  relay c ra f t  and t h e  four  salvos of penetrometers. Because of t he  t h r u s t  
of t h e  secondary retrorocket, t he  re lay  c r a f t  and remaining penetrometers cease 
t h e i r  v e r t i c a l  descent approximately 4 seconds after retrorocket ign i t ion  and 
gradually increase i n  a l t i t ude .  The remaining th ree  salvos of penetrometers 
are released a t  in t e rva l s  of 2 seconds requiring 6 seconds of t he  10-second 
retroburning time. Like t h e  penetrometers which preceded it, t h e  re lay  c r a f t  
at  secondary retrorocket burnout then begins t o  free-fall t o  the  lunar  surface.  
Figure ll a lso  shows t h e  impact t i m e s  of t h e  various salvos and the  corresponding 
a l t i t udes  of t h e  re lay  c r a f t  which vary from 4500 feet  at impact of t h e  first 
salvo t o  about 2500 f e e t  at impact of t he  last salvo. 

Since t h e  re lay  c r a f t  i s  spinning at about 283 rpm at t h e  t i m e  of release 

Consequently t h e  penetrometers 
of t he  penetrometers, t h e  penetrometers leave t h e  re lay  c r a f t  with a veloci ty  
p a r a l l e l  t o  t he  lunar  surface of about 27 fps .  
associated with each salvo are separated by a dis tance of approximately 
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Figure ll.- Terminal t r a j ec to ry  d e t a i l s  of possible omnidi- 
r ec t iona l  penetrometer payload. 

2200 f e e t  upon impact. 
v e r t i c a l  impact ve loc i t i e s  f o r  each salvo. 
shown t o  be nearly constant at about 2’30 fps .  

Figure 12  shows t h e  dispersion distances as well  as  t he  
The v e r t i c a l  impact ve loc i t i e s  a r e  

Upon impact on t h e  lunar  surface, t h e  acce lera t ion  s igna ls  from t h e  pene- 
trometers a re  transmitted t o  the  relay c r a f t  and subsequently relayed t o  ear th  
p r i o r  t o  impact of t h e  re lay  c r a f t .  
e t e r s  and the  relay c r a f t  a r e  discussed i n  t h e  sect ions which follow. 

The design descr ipt ions of t h e  penetrom- 

Penetrometers.- A block diagram of t h e  proposed penetrometer instrumenta- 
t i o n  f o r  the  omnidirectional system i s  shown i n  figure 13. 
omnidirectional accelerometer i s  fed  t o  signal-conditioning c i r c u i t r y  and then 
t o  a modulator-transmitter which exci tes  an omnidirectional spherical  antenna 
(here inaf te r  re fer red  t o  as an antennasphere). 
quency of 250 megacycles, a t ransmi t te r  power output of 100 m i l l i w a t t s  i s  
a t t a inab le  which i s  more than su f f i c i en t  f o r  t h e  programed transmission dis tance.  
The penetrometer power supply consis ts  of a rechargeable ba t t e ry  capable of 
supplying 500 m i l l i w a t t s .  

The output of an 

A t  an a r b i t r a r i l y  selected f r e -  

The penetrometer i s  packaged i n  t h e  form of a sphere 
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Figure 12.- Dispersion and velocity characteristics of omnidirectional penetrometers at impact. 
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L w  ~~~~ I 
Figure 13.- Block diagram of possible omnidirectional penetrometer instrumentation. 

about 3 inches i n  diameter, with the  antennasphere encapsulated near the  
surf ace. 

The penetrometer must be capable of performing during impact accelerations 
up t o  l eve l s  corresponding t o  those developed upon encountering the  hardest 
ant ic ipated surface. I n  order t o  determine t h e  response character is t ics ,  each 
penetrometer must undergo a dynamic performance ca l ibra t ion  onto various t e r -  
r e s t r i a l  materials a t  impact ve loc i t ies  appropriate t o  the  intended mission, 
p r i o r  t o  t h e  f l i g h t .  This ca l ibra t ion  would also account f o r  mechanical dynamic 
e f f ec t s  on t h e  penetrometer s t ruc ture .  Thus, each penetrometer instrument can 
be considered a self-contained radiat ing accelerat ion transducer. 

Table I1 presents a summary of radio-link performance considerations asso- 
c ia ted with t h e  frequency modulated transmitt ing penetrometer instrument and 
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TABLE I1 

RADIO-LINK PERFORMANCE CONSIDERATIONS FOR OMNIDIRECTIONAL 

PENETROICETER TO CRAFT 

[250 megacycles, m] 

Penetrometer antenna gain . . . . . . . . . . . . . . . . . . . .  -12 db 
Path loss (1 mile)  . . . . . . . . . . . . . . . . . . . . . . .  -85 db 
Losses (polar izat ion,  l i ne ,  e t c .  ) . . . . . . . . . . . . . . . .  -4 db 
Relay c r a f t  receiving antenna gain . . . . . . . . . . . . . . .  1 db 

Subtotal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -100 db 
Required signal-noise r a t i o  . . . . . . . . . . . . . . . . . . .  15 db 

Required performance . . . . . . . . . . . . . . . . . . . . . . .  115 db 

Receiver capabi l i ty  (bandwidth, 100 kc) . . . . . . . . . . . . .  98 dbm 
Transmitter power (100 mw) . . . . . . . . . . . . . . . . . . .  20 dbm 

Available performance . . . . . . . . . . . . . . . . . . . . . . .  118 db 

Performance excess 3 db . . . . . . . . . . . . . . . . . . . . . . . .  

af fec t ing  t h e  transmission f r o m  t h e  penetrometer t o  the  relay c raf t ,  which 
include an experimentally determined penetrometer antenna loss of 12  db; a 
calculated 1-mile link-path l o s s  of 85 db; and losses  due t o  polarization, 
antenna feed, and so  for th ,  which may approach 4 db. Relay-craft an tenna  length 
and or ien ta t ion  i s  such as t o  allow a receiving antenna gain of a t  least 1 db. 
If a receiver  output signal-noise r a t i o  of 15 db i s  t o  be provided, t h e  t o t a l  
performance requirement t o t a l s  115 db. A relay-craft receiver s e n s i t i v i t y  of 
98 dbm at  100 kc bandwidth and the  previously mentioned 100-milliwatt trans- 
m i t t e r  power are readi ly  attainable;  these y ie ld  a t o t a l  avai lable  performance 
of 118 db. Thus, t he  system provides a performance excess of at least 3 db. 

The performance considerations of t a b l e  I1 are  conservative because no 
upper l i m i t  performance i s  demanded of any of the  l i n k  components. 
choice of operating frequency and the  modulating technique and, hence, t h e  per- 
formance requirements may change f o r  pa r t i cu la r  missions - t he  se lec t ion  being 
dependent on the  var iant  parameters of t he  pa r t i cu la r  mission. 

However, the  

Relay c ra f t . -  The port ion of t h e  experimental payload which hovers above 
the  lunar  surface during t h e  penetrometer impact period has been previously 
defined as a relay c r a f t .  The function of t h i s  apparatus i s  t o  receive t h e  
r e a l - t i m e  analog data  transmissions from t h e  impacting penetrometers and 
retransmit th i s  information a t  su i tab le  frequency, power, and bandwidth t o  
earth-based receiving s ta t ions,  Deep Space Instrumentation F a c i l i t y  (DSIF). 
conceptual sec t iona l  sketch of t he  25-inch spherical  re lay c r a f t  i s  given i n  
f igure  14, and i t s  funct ional  operating sequence i s  given i n  block diagram form 
i n  f igure  15. The analog da ta  transmissions from t h e  impacting penetrometers 
are received by t h e  relay-craf t  receiving antenna system and are d is t r ibu ted  by 
means of a multicoupler t o  as many receivers as there  are penetrometers (16 f o r  
the mission described). Each receiver  i s  tuned t o  t h e  unique operating fre- 
quency of a penetrometer and these frequencies a re  su f f i c i en t ly  separated t o  
minimize intermodulation. The receivers  route t h e  penetrometer s ignals  t o  
individual d ig i t i z ing  channels. 

A 
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Figure 14.- Sectional sketch of relay craft for possible omnidirectional 
penetrometer payload. 

Each d ig i t i z ing  channel converts t he  accelerat ion s igna l  i n to  a represent- 
a t i v e  pulse t r a i n .  The conversion process consis ts  of e i t h e r  measuring the  
amplitude of t h i s  s igna l  at  selected ins tan ts  of time o r  measuring the  time a t  
which the  s igna l  reaches preselected l eve l s  of amplitude. These measurements 
a re  converted t o  groups of pulses i n  binary code form which represent numerical 
values. The pulse groups are stored and subsequently read out by a programer. 
The programer rate of readout i s  much slower than the  f a s t e s t  accelerat ion 
pulse t i m e  which may occur; thus, an e f fec t ive  transmission bandwidth reduction 
i s  achieved commensurate with the  spacecraft t ransmit t ing power l imitat ions.  
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Figure 15.- Block diagram showing funct ional  operating sequence of re lay c r a f t  f o r  pos- 
s i b l e  omnidirectional penetrometer payload. 

CHANNELS 225 mc -c -. 
1 

Further, s ince data  readout i s  cyc l ic  and nondestructive, data transmission 
redundancy i s  provided. The addi t ion of appropriate synchronizing and ident i -  
fying pulses t o  the  da ta  pulse code groups form a coded pulse t r a i n  which modu- 
l a t e s  t he  960 megacycle transmission t o  ear th .  

1 
TRANSMITTER 
960mc, 2 0 w  - 

(FCM/FM/PM) 

Table I11 presents a summary of t he  radio-link performance considerations 
associated with transmissions between the  re lay  c r a f t  and the  ear th  at  a DSIF 
operating frequency of 960 megacycles. 
960-megacycle spacecraft  t ransmi t te r  provides s igna l  power 13 db g rea t e r  than 

The t a b l e  shows t h a t  a 20-watt 

TABLE I11 

RADIO-LINK PERFORMANCE CONSIDERATIONS FOR 

RELAY CRAFT TO EARTH 

b60 megacycles, PcM/FM/Pg 

Relay c r a f t  t ransmi t t ing  antenna gain . . . . . . . . . . . . . .  2 db 

Losses (polar izat ion,  l i n e ,  e t c . )  . . . . . . . . . . . . . . . .  -4 db 
Path loss . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -204 db 

DSIF antenna ga in  . . . . . . . . . . . . . . . . . . . . . . . .  45 db 
Subtotal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -161db 

Required signal-noise r a t i o  . . . . . . . . . . . . . . . . . . .  15 db 
Required performance . . . . . . . . . . . . . . . . . . . . . . .  176 db 

Receiver capabi l i ty  (bandwidth, 3 kc) . . . . . . . . . . . . . .  138 dbm 
Transmitter power (20 w)  . . . . . . . . . . . . . . . . . . . .  43 dbm 

Available performance . . . . . . . . . . . . . . . . . . . . . . .  181 db 

Performance excess . . . . . . . . . . . . . . . . . . . . . . . .  5 db 
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t h e  noise power a t  DSIF with a performance excess of 5 db which includes minor 
losses  not l i s t e d .  The DSIF performance capabi l i ty  noted i n  the  t ab le  i s  known 
from previous deep space missions and t h e  relay-craft-equipment performance i s  
well  within present technology. 

Relay c ra f t  which a r e  required t o  transmit s igna ls  while spinning present 
a unique transmission problem due t o  the  d i f f i c u l t i e s  encountered i n  maintaining 
a transmission l i n k  l i n e  t o  t h e  receiving s t a t ion .  Various means are avai lable  
t o  provide high-gain spacecraft transmitting-antenna systems and subs tan t ia l ly  
re l ieve  radio-frequency power requirements; however, these antenna systems 
require ac t ive  pointing and s t ab i l i za t ion  control  which introduce complexity, 
r e l i a b i l i t y ,  and weight problems of t h e i r  own. 
l e m  f o r  a Ranger appl icat ion appears t o  be a so l id  of revolution antenna-beam 
pa t te rn  employing low-gain f ixed antenna s t ruc ture  and high l eve l s  of radio- 
frequency transmitted power. I n  such a system t h e  antenna s t ruc ture  can be made 
very l ight i n  weight; furthermore t h e  higher operating power l eve l s  would pro- 
vide ce r t a in  advantages t o  t h e  experimental operational technique. For example, 
l e s s  precis ion i s  required of re lay-craf t  maneuvers, t h e  time required t o  
es tab l i sh  t h e  communication l i n k  between the  relay c r a f t  and the  receiving sta- 
t i o n  may be reduced, and t h e  probabi l i ty  of maintaining o r  quickly reacquiring 
tracking of re lay-craf t  transmissions through relay-craf t  maneuvers and retro-  
sequence events i s  improved. The addi t ional  battery weight required t o  accom- 
p l i s h  t h e  higher power l e v e l  i s  not incompatible with t h e  weight budget of t h e  
ex is t ing  Ranger lunar  exploratory spacecraft, and t h e  r e l i a b i l i t y  requirements 
are subs tan t ia l ly  less than a l te rna t ive  high-gain t ransmit t ing antenna systems. 
A properly shaped s o l i d  of revolution antenna-beam pa t te rn  can be su f f i c i en t ly  
wide at  ear th  in te rcept  t h a t  several  degrees of misalinement of t he  spinning 
re lay  c r a f t  can be to l e ra t ed  without appreciable degradation i n  radio-link 
performance between t h e  re lay  c r a f t  and t h e  receiving s t a t ion .  

The best  solut ion t o  t h i s  prob- 

Unidirectional System 

Since t h e  omnidirectional penetrometer system still requires some develop- 
ment, a second study w a s  i n i t i a t e d  t o  devise a system concept u t i l i z i n g  avai l -  
able  technology. This sect ion of t he  appendix discusses the  r e su l t s  of t h a t  
study. 

The payload configuration f o r  t h i s  system, iden t i ca l  i n  overa l l  dimensions 
t o  the  omnidirectional system, consis ts  of a 25-inch spherical  re lay c ra f t  
equipped with a secondary retrorocket and 4 bullet-shaped unidirect ional  pene- 
trometers. The shape of t h e  penetrometers suggested f o r  t h i s  system w a s  
se lected t o  permit t h e  appl icat ion of available unidirect ional  techniques. 
number of penetrometers w a s  reduced from 16 f o r  t h e  omnidirectional system t o  
4 i n  order t o  reduce relay-craf t  instrumentation complexity while providing an 
adequate number of lunar  surface measurements. 

The 

The sequence of events chosen f o r  t he  terminal t r a j ec to ry  of the  unidirec- 
t i o n a l  system i s  similar t o  t h a t  f o r  t h e  omnidirectional system. 
radar a l t imeter  i s  set such t h a t  the  payload i s  positioned at 3000 f e e t  above 
t h e  lunar  surface at  primary retrorocket burnout with residual  ve loc i t ies  iden- 
t i c a l  t o  those f o r  t h e  seismometer and omnidirectional penetrometer system 

The spacecraft  
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Figure 16.- Terminal t r a j e c t o r y  d e t a i l s  for t h e  unid i rec t iona l  
penetrometer system. 

A s  f o r  t he  omnidirec- 
t i o n a l  system, accelera- 
t i o n  s ignals  from t h e  
impacting penetrometers 
are transmitted t o  the  
relay c r a f t  and subse- 
quently retransmitted t o  
ear th .  Design considera- 
t i o n s  f o r  t he  penetrom- 
eters and t h e  re lay  c r a f t  
of t h i s  unidirect ional  
penetrometer system are 
discussed separately i n  
t h e  sect ions which follow. 

Penetrometers. - The 
design considerations f o r  
t h e  instrumentation of a 
unidirect ional  penetrom- 
e t e r  are l e s s  s t r ingent  
than those of t h e  



previously described omnidirectional penetrometer. F i r s t ,  un id i rec t iona l i ty  
permits t he  use of conventional uniaxial  p iezoe lec t r ic  accelerometers as t rans-  
ducing elements. 
t i o n a l  antenna designs such as a simple dipole.  The unidirect ional  concept a l so  
affords  t h e  poss ib i l i t y  of improved shock protect ion t o  t h e  components by 
or ient ing them so t h a t  t h e  impact force i s  applied along a preferred axis and/or 
by providing shock absorption or  impact l imi t ing  material along a preferred 
axis. 

Second, t h e  shaped device lends i tself  t o  t h e  use of conven- 

The consideration of these and other  f ac to r s  unique t o  t h e  unidirect ional  
penetrometer concept, l e d  t o  the  bullet-shaped penetrometer design i l l u s t r a t e d  
i n  t h e  sect ional  sketch of figure 17. This figure gives t h e  overa l l  dimensions 
of t h e  penetrometer and ind ica tes  t h e  various components of t h e  system. Func- 
t i o n a l l y  t h i s  design i s  s i m i l a r  t o  t h a t  shown i n  t h e  block diagram of f igure  13 
f o r  t h e  omnidirectional penetrometer. However, i n  t h e  unidirect ional  concept 
t h e  uniaxial  accelerometer i s  subst i tuted f o r  t h e  omnidirectional accelerometer 
system, and t h e  metalized-skin ver t ical-dipole  antenna i s  employed i n  l i e u  of 
t h e  omnidirectional s h e l l  antennasphere. The operational sequence of t h e  two 
penetrometer designs i s  t h e  same with t h e  exception t h a t  t h e  impact force  
applied t o  the  unidirect ional  system must be along t h e  sensing axis of the  
accelerometer t o  avoid degradation of t h e  response, which increases as the  
s ine of the  off-axis angle. 

Performance charac te r i s t ics  of t h e  radio l i n k  between t h e  unidirect ional  
penetrometer and t h e  re lay  c r a f t  w e r e  evaluated, based upon t h e  same operating 
conditions as those l i s t e d  i n  t a b l e  I1 f o r  t h e  omnidirectional penetrometer 
design. "his evaluation showed t h a t  a performance margin improvement of about 
5 db is  real ized i n  t h e  unidirect ional  system due t o  t h e  higher antenna gain 
a t t a inab le  with t h e  simpler antenna design. 

Although t h e  use of a unidirect ional  
penetrometer permits an improvement i n  
antenna gain, t h e  antenna must be oriented 
with respect t o  the  re lay  c ra f t  at t he  time 
of penetrometer telemetry transmissions. 
Figure 18 i l l u s t r a t e s  a typ ica l  pa t te rn  pro- 
duced by such a unidirect ional  penetrometer 

of penetrometer impact, t he  re lay  c r a f t  
should be posit ioned out of t h e  region of 

Master oscillator reduced rad ia t ion  which e x i s t s  along t h e  
penetrometer longi tudinal  axis. Typical 
ground and a l t i t u d e  distances between t h e  

time of s igna l  transmission f o r  t he  terminal 
t r a j ec to ry  considered f o r  t h i s  case are a l s o  
indicated on t h i s  f igure  and show t h a t  the  
re lay  c r a f t  i s  within t h e  transmission zone 
of t h e  penetrometer antenna pat tern.  
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Figure 18.- Sketch of unidirectional-  
penetrometer antenna-t ransmi s s ion  
pa t t e rn  showing geometry at 
impact. 

e s sen t i a l ly  iden t i ca l  t o  the  omnidirec- 
t i o n a l  penetrometer system design of f ig -  
ure 14. The main difference i s  the  reduc- 
t i o n  of t he  number of receivers from 16 
t o  4 because only 4 penetrometers were 
used. This reduction i n  t h e  number of 
receivers s implif ies  t h e  intercoupling 
problems of t h e  receiving antenna, and 
the  receiver  and data-processing c i r -  
cu i t r i e s .  The funct ional  performance of 
t h i s  re lay  c r a f t  i s  iden t i ca l  t o  t h a t  of 
t h e  omnidirectional penetrometer system. 
The charac te r i s t ics  f o r  t h e  radio-link 
performance between the  re lay  c r a f t  and 
t h e  ear th  as l i s t e d  i n  t ab le  111, apply 
t o  both systems. 

Although t h e  bullet-shaped unidirec- 
t i o n a l  penetrometer s implif ies  instrumen- 
t a t i o n  problems, it i s  of paramount 
importance t h a t  i t s  uniaxial  accelerat ion 
sensor be properly oriented with the  lunar  
surface during impact. Schemes u t i l i z i n g  
aerodynamics f o r  securing penetrometer 
a t t i t u d e  or ien ta t ion  a re  necessarily 
omitted f o r  lunar  applications due t o  the  
extremely low density of t he  moon's 
atmosphere. However, t h e  low lunar  
atmospheric densi ty  suggests tha t ,  should 

t h e  penetrometer be s tab le  when released from t h e  ro ta t ing  payload, no external  
forces  ex i s t  t o  upset t h a t  s t a b i l i t y .  Correspondingly, penetrometer re lease 
t e s t s  from a spinning platform w e r e  conducted i n  the  60-foot-diameter vacuum 
sphere at the  Langley Research Center t o  evaluate penetrometer s t a b i l i t y  char- 
a c t e r i s t i c s  over t h e  i n i t i a l  port ion of t h e  penetrometer f r e e - f a l l  f l i g h t  path. 
These tes ts  were conducted i n  a vacuum approaching tor r ,  and the  f l i g h t  

path allowed by the  confines of t h e  t es t  area w a s  about 1A percent of t h e  sug- 

gested t r a j ec to ry  distance and about 10 percent of t h e  suggested t r a j ec to ry  
f l i g h t  time. The results of these tes ts  indicated t h a t  bullet-shaped pene- 
trometers can be released from a spinning vehicle such t h a t  a t t i t u d e  s t a b i l i t y  
i s  maintained comensurate with t h e  experiment requirements. 
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